To cross-correlate LDN-193189 between the secretome and proteome data sets, we first Ilomastat molecular weight searched for Leishmania orthologs in T. brucei using BLAST (Basic Local Alignment Search Tool) analysis. 281 out of the 358 Leishmania secretome entries were found to have an ortholog in Trypanosoma (additional file 3, Table S3), including 115 actively secreted proteins and 166 cell-associated proteins. Interestingly, a high proportion (61%) of the former was present in our Trypanosoma secretome, suggesting a close relationship between the actively secreted proteins in Leishmania
and the Trypanosoma secreted proteins. In contrast, only 8% of the Trypanosoma secretome was shared with the glycosome proteome (additional file 4, Table S4). We also compared the trypanosome total proteome (additional file 5, Table S5) and the secretomes from Trypanosoma and Leishmania. Figure 5 shows that 41% and 39%, respectively, of the trypanosome and Leishmania secretomes were not shared with any of the other proteomes. Simultaneously, secretome proteins shared with
selleck kinase inhibitor the Trypanosoma total proteome amounted to 47% and 43% for Trypanosoma and Leishmania, respectively, indicating that a major part of these secretomes resulted from an active secretion process. Figure 5 Overlap between Trypanosoma total proteome and the T. brucei gambiense and L. donovanii secretome. Proteins identified in 3 different compartments (T. brucei total proteome, T. brucei gambiense secretome, and L. donovanii secretome) were compared as to determine part of the proteins that were either specific to each compartment or common to different compartments. So, the black circle in the middle shows that 84 proteins Sorafenib cell line are common to T. brucei total proteome, T. brucei gambiense secretome, and L. donovanii secretome. Among the other proteins of the T. brucei gambiense secretome, for example, 182 (41%) were specific to this compartment, whereas 52 were common with L. donovanii secretome, and 126 with the total
proteome; out of the proteins identified in the total T. brucei proteome, 824 were specific to this compartment. Finally, these different proteomes were compared at the functional level (Figure 6; additional files 1, 2, 3, 4 and 5, Tables S1-S5). Interestingly, the two secretomes showed large similarities with almost the same proportion of proteins involved in folding and degradation and protein synthesis or with unassigned function. In contrast, the comparison between secretomes and glycosome functional categories showed major differences, the glycosome proteome displaying an expected bias toward sugar (15%) and lipid metabolism (7%) and, more surprisingly, toward nucleotide metabolism (7%). Also, the total proteome differed from all sub-proteomes by a deeper investment in cell organization and RNA/DNA metabolism.