A barrier of around 0 95 eV has been found to control the photovo

A barrier of around 0.95 eV has been found to control the photovoltage spectra at room temperature. Three barriers with approximate heights from 1.08 to 1.14 eV, from 0.66 to 0.78, and from 0.48 to 0.54 eV have been observed in photo-emf spectra at 80 K and associated with the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current have been found to vary from 0.3%/℃ to 0.6%/℃ for the forward biased structures and around 2.5 %/℃ for the reverse biased ones. Endnotes aWe cannot discriminate between δ and θ phases of Ni2Si

[18] and, following [17], suppose that only the δ phase is present; the experimental value of its density, taken from [18], makes 7.23 g/cm3, whereas its X-ray density (7.405 g/cm3) coincides in various CHIR 99021 sources [17, 18].bA barrier of this height is attributed to

the Ni/Si interface in [21], yet we have not observed a direct contact of Ni to Si by TEM after the silicide film formation.STI571 ic50 cNotice also that there is an additional advantage of the considered structures with Schottky barriers. They may be applied both as temperature sensors of bolometers for the detection in mid-IR or far-IR and as photonic sensors for the detection in near-IR and visible spectral ranges. Authors’ information KVC is a junior research fellow, VAC is a leading research fellow, and MSS is a PhD student at the Laboratory of Nanophotonics, Department of Applied Thermography, Prokhorov General Physics Institute, Russian Academy of Sciences. VYR is a senior research fellow and VPK is the head of the Laboratory of Medium IR-range Crystalline selleck screening library Lasers at the Department of Applied Thermography, Prokhorov General

Physics Institute. VPK is also a co-founder and a board member of Technopark of GPI RAS and a co-founder and a partner of Thermographic Systems Ltd. VAY is the head of the Department of Applied Thermography and the Laboratory of Nanophotonics Anidulafungin (LY303366) at Prokhorov General Physics Institute; he is also a co-founder and a board member of Technopark of GPI RAS and a co-founder and a partner of Thermographic Systems Ltd. Acknowledgements The equipment of the Center for Collective Use of Scientific Equipment of GPI RAS was used for this study. We acknowledge the technological support for our work. We thank Ms. N. V. Kiryanova for her valuable contribution to the arrangement and management of this research. We express our appreciation to Mr. V. P. Korol’kov and Mr. G. A. Rudakov for performing the technological processes. We are grateful to Ms. L. A. Krylova for carrying out chemical treatments of the experimental samples. References 1. Fujisawa D, Maegawa T, Ohta Y, Kosasayama Y, Ohnakado T, Hata H, Ueno M, Ohji H, Sato R, Katayama H, Imai T, Ueno M: Two-million-pixel SOI diode uncooled IRFPA with 15 μm pixel pitch. Proc SPIE 2012, 8353:83531G.CrossRef 2.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>