Twelve patients were identified on the basis of p-ANCA reactivity, detectable anti-MPO antibodies (>20 units of reactivity) and serum availability for fine specificity analysis. Of these patients, 58% were male and the average age of individuals within the cohort was 60·5 (±15·6 years of age). All patients were referred for serological evaluation of a clinical systemic vasculitis, with all but one having evidence of significant renal involvement. Healthy
control sera displayed no significant binding when tested by anti-MPO ELISA. Overlapping decapeptides representing the MPO protein were tested against the 12 patient samples and frequency matched control samples. The patients displayed significant reactivity to multiple sections of the protein, SRT1720 chemical structure including seven major significant epitopes (Fig. 1). Significant epitopes are defined as being those sequences for which at least 33% of patients exhibited an average reactivity ≥3 standard deviations (s.d.) above the normal mean. These major significant epitopes include epitope 1: GSASPMELLS (aa 91–100); epitope 2: WTPGVKRNGF (aa 213–222); epitope
3: SARIPCFLAG (aa 393–402); epitope 4: WDGERLYQEA (aa 437–446); epitope 5: YRSYNDSVDP (aa 479–488); epitope 6: RLDNRYQPMEPN (aa 511–522); and epitope 7: IFMSNSYPRD (aa 717–726) (Table 2). Epitopes 2 and 6 were bound by the highest percentage of patients, having been bound by 41·7% Selleckchem MLN2238 and 58·3% of tested patient sera, respectively. Epitopes 1, 3, 4, 5 and 7 were all bound by 33·3% of patients. While these epitopes were found to be most common among the patients, the overall response was highly variable (Table 1). An example of this in Fig. 1 Grape seed extract shows binding patterns from two patients (Fig. 1a,b) that exhibit a response against various MPO decapeptides, with the only similarity found at decapeptides 256–257 (epitope 6). Males displayed a more diverse repertoire of antibody specificities than females, on average targeting 3·7 specificities
compared with 1·2 in females. None of the defined epitope sequences displayed significant binding by control samples. The RLDNRYQPMEPN (aa 511–522) sequence representing epitope 6, which is the most common antigen target with the highest intensity of binding compared to the other defined epitopes, was used for confirmatory analysis of the solid-phase peptide results. The samples were screened using a peptide ELISA format with the peptide constructed on a polylysine (MAP) backbone. Of the 12 samples (excluding one with insufficient sera), six patients displayed significant levels of this antibody specificity (Table 1), providing 100% concordance with the solid phase epitope mapping.